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Abstract. In the seesaw model with hierarchical Dirac masses, the neutrino mixing angle exhibits the
behavior of a narrow resonance. In general, the angle is strongly suppressed, but it can be maximal for
special parameter values. We delineate the small regions in which this happens for the two-flavor problem.
On the other hand, the physical neutrino masses are hierarchical, in general, except in a large part of the
region in which the mixing angle is sizable, where they are nearly degenerate. Our general analysis is also
applicable to the RGE of the neutrino mass matrix, where we find analytic solutions for the running of
the physical parameters, in addition to a complex RGE invariant relating them. It is also shown that, if
one mixing angle is small, the three-neutrino problem reduces to two two-flavor problems.

1 Introduction

The exciting development of recent experiments [1] has
offered strong evidence for the existence of neutrino os-
cillations, from which one can make inferences about the
intrinsic properties of the neutrinos. While the neutrino
masses (mass differences) are found to be very tiny, there
is a major surprise for the mixing angles. It is found that
at least one, and possibly two, of the three mixing angles
are large, or even maximal. This is in stark contrast to the
situation in the quark sector, where all mixing angles are
small.

Theoretically, the seesaw model [2] is very appealing in
that it can offer a natural mechanism which yields small
neutrino masses. However, owing to its complex matrix
structure, it is not obvious what the implied patterns of
neutrino mixing are. In a previous paper [3], we found a
parameterization which enabled us to obtain an exact so-
lution to the two-flavor seesaw model. When one makes
the usual assumption that the Dirac mass matrix has a
strong hierarchy, the physical neutrino mixing angle ex-
hibits the narrow resonance behavior. For generic param-
eters in the Majorana mass matrix, the physical neutrino
mixing angle is strongly suppressed. However, if the pa-
rameters happen to lie in a very narrow region, the mixing
can be maximal.

In this paper we will expand on our earlier investiga-
tions and discuss in detail the behavior of the neutrino
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mixing matrix in the seesaw model. As was shown before,
if we assume that the Dirac mass hierarchy is similar to
that of the quarks, the problem has three relevant param-
eters associated with the Majorana sector, namely, the
mixing angle, the ratio of the masses, and their relative
phase. We will present plots of the physical neutrino mix-
ing angle and their mass ratio in the 3D parameter space.
These will offer a bird’s-eye view of their behaviors. In par-
ticular, the neutrino mixing angle is only appreciable in
a very small region, which we exhibit explicitly. Further-
more, this region is complementary to the region in which
there is an appreciable physical neutrino mass hierarchy.
Thus, roughly speaking, the seesaw model divides the 3D
parameter space in two parts. There is a very small region
in which the mixing angle is large, while at the same time
the neutrino masses are nearly degenerate. For most pa-
rameters, the mixing angle is small but there is a strong
hierarchy in the mass eigenvalues. An exception to this
picture is when the Majorana matrix has an extreme hi-
erarchy and a very small mixing angle. In this tiny region,
the physical neutrinos can be hierarchical while simulta-
neously their mixing angle is large.

The solution to the seesaw problem is most transparent
in the parameterization introduced in [3]. However, it is
useful to make connections with the usual notation, where
individual matrix elements are regarded as independent
parameters. We obtain relations which clarify the roles
played by the various parameters. They enable one to gain
insights in understanding the numerical results presented
in the 3D plots.

The general analysis of symmetric and complex ma-
trices turns out to be useful in other applications. Our
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method can be used to yield an analytic solution of the
renormalization group equation (RGE) of the effective
neutrino mass matrix. In addition, we obtain a (complex)
RGE invariant which relates the running of the mixing
angle and the complex mass ratio. The detailed analysis
of the structure of the seesaw matrix also suggests a uni-
versal picture for the quark as well as the neutrino mass
matrices. While the quarks have generally small mixing
angles and hierarchical mass ratios, if one assumes that
the Majorana matrix itself is of the seesaw type, the ef-
fective neutrino mixing angle can be naturally large.

Finally, we turn to a discussion of the three-neutrino
problem. Although the principle involved here is the same
as in the two-neutrino problem, the algebra with the Gell-
Mann λ matrices is far more complicated than that of
the Pauli σ matrices. We are unable to obtain a general
solution in this case. However, it is quite well established
that one of the neutrino mixing angles is small [4]. In this
case, an approximate solution can be obtained. It turns
out that, to lowest order, the three-neutrino problem can
be reduced to two two-flavor problems. This solution can
thus accommodate the “single-maximal” or “bimaximal”
solutions that have been considered in the literature.

2 The two-flavor problem

In previous papers [3,5], an exact solution was obtained
for the two-flavor seesaw model. In this section, in addition
to a summary of the earlier paper, further results will be
presented.

For two flavors, the seesaw model,

mν = mDM
−1
R mT

D, (1)

can be written in the form

mν = U

(
m1

m2

)
VR

(
M−1

1

M−1
2

)
V T
R

(
m1

m2

)
UT.

(2)
Let us introduce the parameterization(

m1

m2

)
=

√
m1m2e−ξσ3 , ξ =

1
2
ln(m2/m1); (3)

(
M−1

1

M−1
2

)
=
√

1
M1M2

e2ησ3 ,

η =
1
4
ln(M2/M1); (4)

VR = eiασ3e−iβσ2eiγσ3 . (5)

Thus, in the basis in whichmD is diagonal, β is the mixing
angle for M−1

R while ±2γ are the phases of the eigenval-
ues. This parameterization shows clearly that the relevant
variables in the diagonalization of mν are ξ, α, β, γ and η.
Of these, it is usually assumed that m2/m1 can be iden-
tified with the known quark mass ratio. Also, α can be
absorbed into U as part of the phase of the Dirac mass

eigenvalues. For U � I, in particular, it becomes the phase
of the charged leptons and is not observable.

Note also that, apart from an overall constant, mν is a
product of 2 × 2 complex matrices with det = +1, i.e., it
is an element of SL(2, C). Thus, we can identify mν with
an element of the Lorentz group, with ξ and η interpreted
as rapidity variables.

To find the effective neutrino mixing matrix, we need
to rearrange the matrices in mν in a different order:

mν =

√
m2

1m
2
2

M1M2
UW e−2λσ3WTUT, (6)

W = eiω
′σ3e−iθσ2eiφσ3 , (7)

ω′ ≡ ω + α, λ =
1
4
ln(µ2/µ1). (8)

Here, the physical neutrino masses are given by µ1 and
µ2, with their ratio given in terms of λ, while 4φ is their
relative phase. We have also absorbed the phase α into
ω′. The physical neutrino mixing matrix is given by UW ,
so that W is the induced mixing matrix from the seesaw
mechanism. The left-handed Dirac mixing, U , in analogy
to the quark sector, is often taken to be close to the iden-
tity, U � I. In the following we will concentrate on the
behavior of W only, corresponding to U � I. However,
when necessary, U can always be included in the final re-
sult.

As was shown before, the solution for W corresponds
to that of the velocity addition problem in relativity, and
one can readily obtain the answer by manipulating the
Pauli matrices. We have [6]

tan 2ω =
ΣI

ΣR coth 2ξ − cos 2β
, (9)

tan 2θ =
sin 2β/(cos 2ω cosh 2ξ)

cos 2β −ΣR tanh 2ξ −ΣI tan 2ω , (10)

cosh 2λ = cosh 2ξ̄ cosh 2η̄ − cos 2β sinh 2ξ̄ sinh 2η̄, (11)

where λ̄ = λ+ iφ, ξ̄ = ξ − iω, η̄ = η + iγ, and

coth 2η =
1 − (M1/M2)2 − 2i(M1/M2) sin 4γ
1 + (M1/M2)2 − 2(M1/M2) cos 4γ

≡ ΣR + iΣI . (12)

Note the non-trivial contribution from tan 2ω in (10).
To diagonalize the symmetric and complex mass matrix,
U−1mνU

∗, as is treated in detail in the next section, it
is necessary to multiply the mass matrix on either side
by the same phase matrix. This phase matrix is precisely
e−iω′σ3 .

Equation (10) shows that, when mD is hierarchical
(ξ � 1), the neutrino mixing angle θ is small (tan θ ∼
e−2ξ ∼ m1/m2), for generic values of the other parame-
ters, β, η, and γ. However, when the denominator in (10)
vanishes, θ is maximal. This is the resonance behavior
mentioned before. In general, the seesaw mechanism sup-
presses the neutrino mixing angle. But when the resonance
condition is met, it is enhanced and becomes maximal.
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Fig. 1. Region in which sin2 2θ > 0.5, with tanh 2ξ = 0.9998,
or (m1/m2) = 0.01. Note the log scale used for (M1/M2)

This behavior is quantified in Fig. 1, which is a 3D plot
of the region sin2 2θ > 0.5, within the parameter space
spanned by cos 2β, γ and M1/M2. This region consists
roughly of two parts. One runs along the edge cos 2β ≈ 1
and M1/M2 
 1, but γ can take values between 0 and
π/4. The other region is tube-like, and “hugs” the back
wall, γ ≈ π/4, with cos 2β ≈ tanh 2η. It is striking how
small the region for sin2 2θ > 0.5 is. Outside of this region,
which consists of most of the parameter space, sin2 2θ is
tiny (∼ (m1/m2)2). This result is the analog of the famil-
iar focusing mechanism in relativity. When a relativistic
particle decays, most of the decay products are contained
in a forward cone of opening angle ≤ 1/γ0, where γ0 =
1/(1− v2/c2)1/2. This corresponds to the seesaw problem
with the identification γ0 = cosh 2ξ � (1/2)(m2/m1).

In Fig. 2, we blow up the region with a fixed cos 2β ≈ 1.
It is seen that there is considerable structure when sin2 2θ
is maximal. In particular, the dependence on γ is highly
non-trivial. From the scale in the figure, we see that large
values of sin2 2θ are confined in a very narrow region
with width ∼ (m1/m2)2. Note also that, outside of the
maximal sin2 2θ region, near the upper left edge of Fig. 1
(M1/M2 → 0, cos 2β → 1), sin2 2θ remains large. This re-
gion is characterized by an extreme hierarchy of the Majo-
rana masses ((m1/m2)2 > (M1/M2) → 0) and very small
β ((1 − cos 2β) ∼ (m1/m2)2).

Figure 3 shows the contents of Fig. 1 in a 2D parameter
space, with cos 2β = 1/2. It exhibits clearly the behavior
of sin2 2θ near γ = π/4. Here, the maximum of sin2 2θ is
attained at cos 2β = tanh 2η · tanh 2ξ with γ = π/4. Away
from these values, sin2 2θ drops off quickly. The width of
the peak is of order (m1/m2) in either ∆(M1/M2) or ∆γ.
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Fig. 2. A plot of sin2 2θ versus (M1/M2) and γ, with cos 2β =
0.9999, tanh 2ξ = 0.9998. Note the expanded scale of (M1/M2)
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Fig. 3. Typical behavior of sin2 2θ for cos 2β < tanh 2ξ. Here,
cos 2β = 0.5, tanh 2ξ = 0.9998

The behavior of the physical neutrino mass ratio is
depicted in Fig. 4, which exhibits the region of near de-
generacy, µ1/µ2 > 0.5. We have chosen a log scale for
M1/M2 to highlight the detailed structure near the upper
left edge. A comparison with Figs. 1 and 2 reveals the com-
plementary nature of the regions of maximal sin2 2θ versus
hierarchical µ1/µ2. In the small region where sin2 2θ � 1,
one also has µ1/µ2 � 1. However, near the upper left
edge, for (m1/m2)2 > M1/M2 → 0, µ1/µ2 can be small
and at the same time sin2 2θ is large. For generic param-
eters, sin2 2θ ∼ (m1/m2)2, but the masses are also very
hierarchical, (µ1/µ2) ∼ (m1/m2)2.

3 General properties of mass matrices

In order to gain some insights about the results presented
in the previous section, it is useful to study the general
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Fig. 4. Region in which the physical neutrino masses are nearly
degenerate, with µ1/µ2 > 0.5, tanh 2ξ = 0.9998

properties of symmetric complex matrices. We will first
discuss the relations between different parameterizations
of the mass matrices. These relations will shed light on the
special properties of matrices of the seesaw type. They will
also enable one to gain a qualitative understanding of the
results presented in Sect. 2.

3.1 Parameterization of neutrino mass matrices

Within the framework of the seesaw model, the neutrinos
are Majorana in nature, so that their matrices are sym-
metric and complex, in general. We first consider the case
of two flavors,

N =

(
A B

B C

)
. (13)

Here, A,B, and C are arbitrary complex numbers. With-
out loss of generality, we assume that N is normalized so
that detN = +1,

AC −B2 = 1. (14)

This matrix can be diagonalized by a unitary matrix U ,

N = Ue2ησ3UT. (15)

In terms of the eigenvalues (n1, n2), η = (1/4) ln(n2/n1).
A convenient choice for U is the Euler parameterization

U = eiασ3e−iβσ2eiγσ3 . (16)

The relation between the two parameterizations of N is
given by(

A B

B C

)
= (17)

(
e2iα(ch2η̄ +C2β · sh2η̄) S2β · sh2η̄

S2β · sh2η̄ e−2iα(ch2η̄ − C2β · sh2η̄)

)
,

where we have used the notation η̄ = η + iγ, ch2η ≡
cosh 2η, S2β ≡ sin 2β, etc.

Note that because of the condition AC−B2 = 1, there
are exactly four parameters in the three complex numbers
A,B, and C. To understand the role played by the phase
α, let us write

N =
1
2
(A+ C) +

1
2
(A− C)σ3 +Bσ1. (18)

The diagonalization of N is easy provided that the phase
of A−C and B are the same. In general, we can multiply
N on either side by the same phase, e−iασ3 ,

e−iασ3Ne−iασ3 =
1
2
(e−2iαA+ e2iαC)

+
1
2
(e−2iαA− e2iαC)σ3 +Bσ1. (19)

We now choose α so that the phase of (e−2iαA − e2iαC)
coincides with that of B:

argB = arg(e−2iαA− e2iαC). (20)

In this case, the matrix e−iασ3Ne−iασ3 can be diagonalized
by e−iβσ2(e−iασ3Ne−iασ3)eiβσ2 , with

tan 2β =
2B

e−2iαA− e2iαC
= real. (21)

Thus, given an arbitrary N , we need first to determine the
phase α by (20). After this β is fixed by (21), and then γ
can be read off from the diagonal matrix.

Note that from (21),

B(e2iαA∗ − e−2iαC∗) = B∗(e−2iαA− e2iαC). (22)

Thus, (20) is equivalent to

2α = arg(AB∗ +BC∗). (23)

In addition, we may use (22) in (21) to obtain

tan 2β =
2|AB∗ +BC∗|

|A|2 − |C|2 . (24)

Note also that, if |A| = |C|, (20) cannot be used to solve
for α, but (23) and (24) are still valid. The complex eigen-
values of (13) can be obtained from (17). They are given
by

e+2η̄ = Ae−2iα +B tanβ, (25)

e−2η̄ = Ce+2iα −B tanβ. (26)
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It is also useful to introduce another variable,

ζ̄ =
1
2
ln(A/C). (27)

Using ζ̄, (21) can be written as

tan 2β =
B/

√
AC

sh(ζ̄ − 2iα)
. (28)

Also, from (17),

ch2η̄ =
1
2
(e−2iαA+ e2iαC)

=
√
AC · ch(ζ̄ − 2iα). (29)

Similarly,

C2β · sh2η̄ =
√
AC · sh(ζ̄ − 2iα). (30)

We thus have

C2β · tanh 2η̄ = tanh(ζ̄ − 2iα). (31)

This relation can be regarded as a consistency check on
the properties of N . For instance, if C2β = 0 (maximal
mixing), it implies that Imζ̄ = 2α, and that Reζ̄ = 0.
Another constraint is that the phase of tanh 2η̄ must be
the same as that of tanh(ζ̄ − 2iα).

3.2 The seesaw transformation

In the seesaw model, mν = mDM
−1
R mT

D, it turns out that
the properties of mν is closely related to M−1

R when we
choose a basis in which mD is diagonal. We shall call the
change from M−1

R to mν a “seesaw transformation” (ST).
In terms of the notation of the previous section, we define
a ST from N to a new matrix M by

M = e−ξσ3Ne−ξσ3

=

(
A′ B′

B′ C ′

)
. (32)

It is seen immediately that B and AC are invariant (B′ =
B, A′C ′ = AC), while

A′/C ′ = e−4ξ(A/C), (33)

or
ζ̄ ′ = ζ̄ − 2ξ, (34)

where ζ̄ ′ = (1/2) ln(A′/C ′). If we assume that

M = W e2λσ3WT, (35)

W = ei(ω+α)σ3e−iθσ2eiφσ3 , (36)

we can use the results above to derive simple relations
between the parameters pertaining to M and to N . Thus,
from the invariance of B under ST, we have immediately

S2β · sh2η̄ = S2θ · sh2λ̄, (37)

i.e., S2θ · sh2λ̄ is an invariant, independent of ξ. One of
the consequences is that the phase of λ̄ is tied to that of
η̄, since β and θ are both real. In fact, if λ̄ = λ+ iφ, then

tan 2φ · coth 2λ = tan 2γ · coth 2η = constant, (38)

independent of ξ. In particular, if η̄ = η + iπ/4, sh2η̄ is
purely imaginary, then the imaginary part of λ must also
be π/4, i.e., the mass eigenvalues must have opposite signs.
Moreover, given β and η̄, the relation exhibits the comple-
mentary nature of θ and λ; large θ correlates with small
λ, and vice versa. This behavior was already discussed in
connection with the results of Fig. 4 in Sect. 2. From (28),
the invariance of B/(AC)1/2 yields

tan 2θ = tan 2β
sh(ζ̄ − 2iα)

sh(ζ̄ − 2ξ − 2iω′)
. (39)

When the ST is hierarchical, ξ � 1, it is clear that, for
generic ζ̄, the angle θ is suppressed (∼ 1/sh2ξ ∼ m1/m2).
However, if ζ ≈ 2ξ, and if the phases in the denominator
of (39) cancel, then θ becomes maximal. This was the
behavior shown in Fig. 1. It should also be mentioned that
(39) reduces to (10) when one uses (31).

As another application, we note that a qualitative un-
derstanding of Fig. 1 can be gleaned from (17), (21) and
(32). Using (21) and (32), we have

tan 2θ =
2B

e−2iω′A′ − e2iω′C ′ , (40)

with ω = ω′ − α given by (9). For ξ � 1, a necessary
condition for large θ is that |C| � 0 (more precisely, |C| ≤
e−4ξ|A| and |C| ≤ e−2ξ|B|). From (17), this means that
ch2η̄ � cos 2βsh2η̄. However, since ch2η̄ and sh2η̄ have
different phases, this equation has only special solutions.
They are
(1) γ = π/4, so that both ch2η̄ and sh2η̄ are purely imag-
inary, and cos 2β � coth(2η + iπ/2) = tanh2η. This last
equation describes the shaded trajectory on the γ = π/4
wall in Fig. 1. Another solution is
(2) η → ∞, so that ch2η̄ � sh2η̄ � e2iγe2η/2. Then ch2η̄−
cos 2βsh2η̄ � e2iγe2η(1−cos 2β)/2. Since for η → ∞, |B| �
sin 2βe2η, θ can be large provided that e2ξ(1 − cos 2β) 

sin 2β. This solution corresponds to the shaded region in
Fig. 1 with γ �= π/4.

In summary, the neutrino mixing angle θ can only be
large if the (2, 2) element of M−1

R is small, |C| � 0. The
precise value depends on phases and possible cancellation
between A′ and C ′. Note that in the literature a number
of studies has concentrated on the case of M−1

R being a
real matrix. For large mixing, two types ofM−1

R have been
identified:

(1) M−1
R �

(
1 ε
ε ε2

)
;

(2) M−1
R �

(
0 1
1 0

)
,

or M−1
R � i

(
0 1
1 0

)
,
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so that detM−1
R = +1. These are special cases of |C| � 0,

corresponding to the two end points of the shaded region
in Fig. 1, with coordinates (M1/M2, cos 2β, γ) � (0, 1, 0)
and (1, 0, π/4), respectively. Our analysis shows that care
must be taken when we have small deviations from these
forms, which arise naturally in models constructed from a
presumed broken symmetry. The narrowness of the shaded
region means that a viable solution can be easily thrown
off course by small perturbations. An example of such sen-
sitivities is known in the renormalization group running
effects, which we will discuss in the next section.

3.3 Renormalization

It turns out that our general analysis has an immediate
application to the renormalization group equation (RGE)
analysis of the neutrino mass matrix. We briefly comment
on this connection. A full account will be given elsewhere
[7].

In the SM and MSSM, the RGE running of the neu-
trino mass matrix has been very extensively studied [8,
9]. For simplicity, we only consider the two-flavor problem
with (νµ, ντ ). The RGE for the effective neutrino mass
matrix is given by

d
dt
mν = −(κmν +mνP + PTmν), (41)

where κ is related to the coupling constants, t = 1/(16π2)
lnµ/MX , and to a good approximation

P � PT � χ(1 − σ3), (42)

where χ is given by y2τ/4 in the SM and −ỹ2τ/2 in the
MSSM, with yτ and ỹτ being the τ Yukawa coupling in
the SM and MSSM respectively. The solution to RGE is

mν(t) = e−κ′teξσ3mν(0)eξσ3 , (43)

where κ′ = κ + 2χ, ξ = χt, and we have ignored the t-
dependence of the coupling constant so that

∫
κdt � κt,

etc.
It is convenient to factor out the determinant

mν =
√
m1m2M. (44)

Then √
m1(t)m2(t) = e−κ′t

√
m1(0)m2(0), (45)

M(t) = eξσ3M(0)eξσ3 . (46)

Thus, while the overall scale (m1m2)1/2 has a simple ex-
ponential dependence on t, the running of M , which con-
tains the mass ratio and the mixing angle, is just a seesaw
transformation defined in the previous section. The differ-
ence from the traditional seesaw model is that, instead of
ξ � 1, for the RGE the running ξ is usually small (∼ 10−5

in the SM). Nevertheless, the exact and analytic formu-
lae given in (9)–(12) are valid solutions of the RGE. A

detailed analysis of their properties will be given in a sep-
arate paper. We only note that, according to (37), there
is a (complex) RGE invariant,

sin 2θ(t) sinh 2λ̄(t) = sin 2θ(0) sinh 2λ̄(0), (47)

where θ and e4λ̄ (λ̄ = λ+iφ) are, respectively, the physical
neutrino mixing angle and the mass ratio. This equation
can be used to determine λ(t) and φ(t), once θ(t) is ob-
tained from (10). We should also emphasize that, because
the solution can exhibit resonant behavior, a large effect
can result even for very small running ξ 
 1.

3.4 Parameterization of the three-flavor matrix

As is clear from the previous discussions, the Euler param-
eterization is the most convenient one for dealing with the
two-flavor problem. The generalization to three flavors,
then, amounts to parameterizing an SU(3) element in the
form (phase)(rotation)(phase). However, there are alto-
gether eight parameters in SU(3) while each phase matrix
can only accommodate two. So there must also be an ad-
ditional phase matrix contained in the rotational part of
a general SU(3) matrix. This decomposition is of course
none other than the familiar CKM matrix decomposition.
Thus, for three flavors, the analog of (5) is

VR = ei(ε3λ3+ε8λ8)eiε7λ7eiε5λ5eiδ3λ3eiε2λ2ei(ε
′
3λ3+ε′

8λ8).
(48)

Like the CKM representation, the phase factor eiδ3λ3 could
be put in a different location, or one could use another
diagonal λ matrix.

The seesaw problem for three flavors again aims at
rewriting the matrices so that mν is given as in (6), with
W assuming the form of (48). As in the two-flavor case, the
exterior phase factors of W do not contribute to neutrino
oscillations. An exact solution for the three-flavor prob-
lem, however, is not easily obtained owing to the complex-
ity of computing finite matrices involving the λ matrices.
In Sect. 5, we will present an approximate solution to the
three-neutrino problem.

4 A unified approach
to fermion mass matrices

Our general analysis of the properties of the seesaw model
suggests a unified picture of the quark and neutrino mass
matrices. As was discussed in Sect. 2, the physical mixing
angle of a seesaw model is quite small, in general, but can
be maximal when special conditions are met. We will now
present arguments which can associate these regions to
the quark and neutrino mass matrices, respectively. For
simplicity, our discussions are restricted to the case of two
flavors only.
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4.1 Quark mass matrices

It has been known for a long time that quark mass ma-
trices can be adequately described in a seesaw form [10,
11]

m =

(
µ1

µ2

)(
a b

b c

)(
µ1

µ2

)
, (49)

where a, b, c are arbitrary complex numbers, all of the
same order, and µ2/µ1 � 1. Here we have used the ar-
bitrariness in m to demand that it be complex and sym-
metric, in contrast to the usual choice thatm is hermitian.

If the physical masses are denoted as m1 and m2, then
(49) implies that, for generic values of a, b, c,

m1/m2 ∼ (µ1/µ2)2. (50)

The mixing angle satisfies the well-known relation [10]

sin2 θ � m1/m2. (51)

This result was derived first for real matrices, and remains
valid for the complex case, as discussed in Sect. 2. It has
served as a model for quark mass matrices for a long time.

Physically, a symmetric and complex mass matrix can
be derived by a symmetry argument. Since the mass term
in the lagrangian is given by q̄LMqR, a symmetric mass
matrix can be naturally obtained by imposing a discrete
Z2 symmetry:

q̄L ↔ qR. (52)

If we further impose a gauged horizontal symmetry, such
as a U(1) symmetry à la Froggatt and Nielsen [11], then we
are led to a mass matrix in the form of (49). For instance,
we may take the horizontal charge assignments (0, 1) for
(qL1, qL2) and (1, 0) for (qR1, qR2). The charge assignments
for the mass matrix q̄LMqR is

QM ∼
(
2 1
1 0

)
. (53)

The Froggatt–Nielsen mechanism then calls for a mass
matrix of the form

M ∼
(
ε2a εb

εb c

)
, (54)

as in (49).

4.2 Neutrino mass matrices

In Sect. 3.2, we have found that, in order to have a large
physical mixing angle, it is necessary that the (2, 2) ele-
ment of M−1

R be small, i.e., |C| � 0 for

M−1
R =

(
A B

B C

)
.

Since we have used the normalization detM−1
R = +1, the

Majorana mass matrix is given by

MR =

(
C −B

−B A

)
. (55)

The condition |C| � 0 simply means that MR is itself of
the seesaw form. The condition |C| � 0 is not sufficient,
however, to guarantee a large mixing angle, which is a
consequence of further constraints on MR. We will not
attempt a detailed model construction here. We only note
that, as emphasized in Sects. 2 and 3, the mixing angle
is very sensitive to a small variation of the parameters
in MR. In particular, if a model is based on symmetry
arguments, symmetry breaking effects have to be weighted
carefully.

In summary, both the quark and neutrino mass matri-
ces can be adequately described in the seesaw form. Their
difference arises from the Majorana sector, which is it-
self of the seesaw form. This last requirement can lead to
large mixing in the effective neutrino mass matrix. The
sensitivity to small changes in the parameters calls for a
careful examination which should also include three-flavor
effects. Detailed model construction along these lines will
be attempted in the future.

5 An approximate solution
to the three-flavor problem

In Sect. 3.4, it was pointed out that the three-flavor seesaw
[12] problem amounts to rearranging products of matri-
ces in SL(3, C). Since a general analytical solution is not
available, we will turn to an approximate solution which
is physically relevant.

For the three-neutrino problem, it is known that the
(23) angle is near maximal, the (13) angle is small, and
that the (12) angle is probably large. This suggests that,
to a good approximation, the three-flavor problem can be
decomposed into two two-flavor problems. To implement
this scenario, let us consider the 3 × 3 matrix M−1

R ,

M−1
R =


A B DB C E

D E F


 . (56)

The neutrino matrix, with mD diagonal and U = I for
simplicity of presentation, since the general case can be
easily incorporated as in (2), is given by

mν =


m1

m2

m3




A B DB C E

D E F




m1

m2

m3


 . (57)

It is convenient to introduce, in addition to the Gell-
Mann λ matrices, λ9 and λ10,

λ9 =


0

1
−1


 , (58)
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√
3λ10 =


−2

1
1


 . (59)

We may now write
m1

m2

m3


 =


m1 √

m2m3 √
m2m3


 e−ξλ9 , (60)

ξ =
1
2
ln(m3/m2). (61)

Then, the (23) submatrix of mν can be diagonalized,

e−ξλ9


A B DB C E

D E F


 e−ξλ9 = U


 A B′ D′

B′ Λ′ 0
D′ 0 Σ′


UT, (62)

U = eiαλ9eiβλ7eiγλ9 , (63)

e−ξλ9


AB
D


 = U


 A

B′

D′


 , (64)

and (Λ′, Σ′) are the eigenvalues. Although we could have
chosen a proper normalizing factor so that the (23) sub-
matrix has det = ±1, as in Sect. 2, for this problem it is
simpler not to do this and Λ′Σ′ �= 1, in general. If we ab-
sorb eiγλ9 by defining the new variables (B′′, D′′, Λ′′, Σ′′)=
(eiγB′, e−iγD′, e2iγΛ′, e−2iγΣ′), and since λ7 and λ9 com-
mute with the remaining Dirac matrix, (57) becomes

mν = X


 A B′′ D′′

B′′ Λ′′ 0
D′′ 0 Σ′′


XT, (65)

X = eiαλ9eiβλ7


m1 √

m2m3 √
m2m3


 . (66)

Now, the (13) rotation is controlled by |D′′/Σ′′|. How-
ever, we must first make sure that they have the same
phase (with the approximation |m2

1A| 
 |m2m3Σ
′′|). To

this end let us multiply mν by eiω
√

3λ10 on either side,
and choose ω so that e−ωD′′ and e2iωΣ′′ have the same
phase, arg(e−iωD′′) = arg(e2iωΣ′′). In this case, we can
rotate away the (13) element of mν without changing
its other elements by assuming that the angle of rota-
tion is small, |m1D

′′| 
 |√m2m3Σ
′′|. We have (with

A′′ = A−D′′2/Σ′′) approximately

mν � Y


A

′′ B′′ 0
B′′ Λ′′ 0
0 0 Σ′′


Y T, (67)

Y = eiαλ9e−iω(
√

3λ10)eiβλ7e−iψλ5eiω(
√

3λ10)

×


m1 √

m2m3 √
m2m3


 , (68)

tanψ = (m1e−iωD′′)/(
√
m2m3e2iωΣ′′) = real. (69)

After this somewhat laborious route, we see that the
diagonalization of mν can be finally achieved by working
solely in the (12) sector. The crucial assumption for the
success of this procedure is that tanψ 
 1. Otherwise the
(13) rotation e−iψλ5 will generate non-negligible elements
all over the matrix mν . Although the exact condition for
tanψ 
 1 seems complicated, in practice, as long as the
elements B and D in M−1

R are reasonably small, the ap-
proximation is valid.

Fortunately, it is known that in reality the physical
(13) rotation angle is small. This means that for any suc-
cessful mν , the above approximation is appropriate. In
this case, the three-neutrino problem is reduced to two
two-flavor problems. In particular, two popular scenarios,
the bimaximal or single-maximal models, can be accom-
modated.

6 Conclusion

Recent experimental data have revealed two striking fea-
tures of the intrinsic properties of the neutrinos. One, as
expected, they are very light. Two, perhaps surprisingly,
at least some of their mixing angles are large, or even max-
imal. The seesaw model provides a natural explanation of
the lightness. However, the story of the mixing angles is
more complicated. In the seesaw model, the neutrino mix-
ing matrix can be written as UW , where U comes from
the left-handed rotation which diagonalizes the Dirac mass
matrix, and W , defined in (7), is induced from the right-
handed sector of the model. For two flavors, the analytic
solution forW shows that, when there is a mass hierarchy
in mD, the mixing angle in W is greatly suppressed for
most of the available parameter space. However, in a very
small region, which we exhibited explicitly in Sect. 2, the
mixing angle can be large. In addition, this region may
be divided roughly into two parts. In one, characterized
by γ ≈ π/4, the physical neutrino masses are nearly de-
generate. In the other, in which the Majorana mass eigen-
values are hierarchical, the neutrino masses can be either
hierarchical or nearly degenerate. This behavior of W has
interesting theoretical implications.

Since the neutrino mixing matrix is given by UW ,
there are three obvious possibilities which can lead to large
mixing.
(1) U contains large angles but W � I;
(2) both U and W contribute appreciably and they add
up to form large mixing;
(3) U � I but the large angle is in W . Corresponding to
these possibilities we have three different physical scenar-
ios. With W � I, case (1), the physical neutrino masses
are highly hierarchical. The burden for the model builders
is to find a credible theory which makes U almost maximal
naturally. The scenario of case (2) seems the least likely
to be implemented. This is a “just-so” solution whereby
the Dirac and Majorana sectors must conspire to make
the resultant angle large. In case (3), U � I is quite rea-
sonable from quark–lepton symmetry, which leads natu-
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rally to U ∼ UCKM. The challenge is to find a mechanism
whereby the parameters in the seesaw model lie naturally
in the narrow range for large mixing.

In Sect. 4.2, we have identified a necessary condition
for large mixing, namely, that the Majorana mass matrix
is also of the seesaw type. This result suggests a universal
seesaw mechanism for both the quark and neutrino mass
matrices. The quarks can take advantage of the general so-
lution, resulting in small mixing and hierarchical masses.
For neutrinos, the existence of MR can then lead to large
mixing angles. More detailed studies are necessary to im-
plement this scenario.

Our general analysis of symmetric and complex matri-
ces also has an immediate application to the RGE running
of the neutrino mass matrices. Exact and analytic solu-
tions of the RGE are found, in addition to a (complex)
RGE invariant which relates explicitly the running of the
mixing angle, the mass ratio and its phase.

The analyses given above are for the case of two flavors.
However, in the approximation of a small (13) angle, we
have found that the three-flavor problem is reduced to two
two-flavor problems. We thus do not expect qualitatively
different physics for this case.

In conclusion, the neutrino mixing matrix (masses and
mixing angles) implied by the seesaw model has rather in-
triguing properties. To accommodate large mixing angles,
there are just a few limited options available. These con-
ditions should be helpful in the search of a viable neutrino
mass matrix. We hope to return to this topic in the future.
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